
DSP Made Accessible:

Fast Plug-ins Development with
Phausto and

Domenico Cipriani - 2024

Domenico Cipriani - 2024

Intro
• Languages such as C++ , FAUST , Cmajor are extremely powerful l but they

can also be intimidating for beginners or overly complex for prototyping
simpler instruments and effects.

• Using Phausto together with Cmajor can bridges this gap, combining
technical power with creative simplicity, and helping sound artists to bring
their audio ideas to life faster.

Domenico Cipriani - 2024

What is Phausto?
• Phausto is a multi-platform library and API that enables the programming

Digital Signal Processors (DSPs) and sound generation in Pharo

• The audio is generated through FFI calls to a dynamic engine that computes
audio signal by leveraging the power on an embedded FAUST compiler.

• Phausto has been developed with three main goals:

1. To allow sound artists and musician to program synthesisers and effects and compose

music with Pharo;

2. To teach DSP programming to beginners and offer a fast prototyping platform for

musician and audio developers, thanks to its Cmajor and C++ exporters

3. To enrich Pharo applications with sound;

Domenico Cipriani - 2024

Becoming a programmer
• I began programming in 2017 (thanks to Cristian Vogel and Symbolic Sound

Kyma).

• I have been developing Coypu in Pharo and programming music-on-the fly
since 2020.

• Sponsored by the Pharo Association since April 2024.

• Audio plug-ins developer for since 2020, thanks to JUCE.

Domenico Cipriani - 2024

Symbolic sound Kyma
•Music programming language

and IDE written in Smalltalk
created by Carla Scaletti and
K u r t J . H e b e l a t U r b a n a
Champaign, Illinois.

• The Smalltalk code is compiled on an external DSPs
called Capybara, Paca(rana), Pacamara (Ristretto)

• “The Holy Grail of sound design”

Domenico Cipriani - 2024

What is smalltalk?
• Smalltalk was created at Xerox Parc in 1972 by by the Learning Research Group (LRG) scientists,

including Alan Kay, Dan Ingalls, Adele Goldberg, Ted Kaehler, Diana Merry.

• Smalltalk was designed as a purely object-oriented language for teaching programming to children,

emerging from Alan Kay's vision of the "Dynabook" - a personal computer intended for young
learners.

Smalltalk-80's release marked its commercial era. It pioneered several
revolutionary concepts:
• First practical graphical user interface (GUI)
• Model-View-Controller (MVC) pattern
• Integrated development environment (IDE)
• Live programming environment

https://en.wikipedia.org/wiki/Alan_Kay
https://en.wikipedia.org/wiki/Dan_Ingalls
https://en.wikipedia.org/wiki/Adele_Goldberg_(computer_scientist)
https://en.wikipedia.org/wiki/Ted_Kaehler
https://en.wikipedia.org/wiki/Diana_Merry

Domenico Cipriani - 2024

What is PHARO?

• Pharo is a pure object-oriented, dynamically typed, and reflective language; its
syntax fits in a postcard and it comes with a platform-independent IDE.

• Created by Stéphane Ducasse and Marcus Denker at Inria in Lille, it originated as a
fork of Squeak, the free and open-source implementation of Smalltalk.

• Pharo is developed by an international community of open-source developers,
coordinated and maintained by the Pharo consortium.

• It comes with a non-viral MIT license!

• Pharo comes with Integrated Git support and with with an integrated framework for

SUnit Tests

Domenico Cipriani - 2024

Domenico Cipriani - 2024

Syntax Fit a postcard

• All Pharo syntax fit on a Postcard!

Postcard by Pavel Krivanek, 2018

Rule 1: Everything is an Object

Rule 2: Every Class has a superclass

Rule 4: Everything happens by sending messages

Rule 5: Method lookup follows inheritance chain

Rule 6 : Classe are Objects too and they follow the same rules

Postcard by Paul Krivanek

Precedence rules:

1. Unary message (3 factorial)

2. Binary messages (3 + 5)

3. Keyword messages (Transcript show: ‘Hello’)

When multiple messages of the same precedence appear,
Smalltalk evaluates them from left to right.

Domenico Cipriani - 2024

What is faust?
1. FAUST is a purely functional programming language. It is considered state-of-

the-art in the research and development of time-domain algorithms that can be
represented as block diagrams, such as virtual analog synthesisers, filters,
waveguide physical models, and reverbs.

2. FAUST standard libraries offer a ready-to-use, extensive collection of sound
generators, physical models, DSP helper functions, and effects, all resulting from
cutting-edge audio research supported by a large community.

3. FAUST architecture and its C-box-API enable embedding its compiler inside
Pharo

Domenico Cipriani - 2024

What is In faust Libraries?
Oscillators

Basic Oscillators, Wave-Table-Based Oscillators, Low Frequency Oscillators, Alias-Suppressed
Oscillators, Impulse Trains, Filter-Based Oscillators, Waveguide-Resonator-Based Oscillators, Casio
CZ Oscillators, PolyBLEP-Based Oscillators

Filters
Basic Filters, Comb Filters, Ladder Filters, Digital Filter Sections Specified as Analog Filter
Sections, Simple Resonator Filters, Butterworth Filters, Special Filter-Bank Delay-Equalizing
Allpass Filters, Parametric Equalizers (Shelf, Peaking), State Variable Filters (SVF), …

Envelopes A collection of linear and exponential envelope generators

Effects Reverbs, delays, flangers, choruses, pitch shifters, mixers and saturators

Physical Modeling String Instruments, Bowed String Instruments, Wind Instrument, Exciters, Modal Percussions, Vocal
Synthesis

Analysis Tools Amplitude tracking, spectrum-analysers, Fast Fourier transform

Dynamics processor Compressors, limiters, expanders

Domenico Cipriani - 2024

Why ?
• We can easily export our DSP to a Cmajor plug-in thanks to the Faust

compiler.

• We can use the plug-in we created we the Cmajor wrapper plug-in:

 https://github.com/cmajor-lang/cmajor/releases

• Cmajor allows simple procedural DSP code to be easily composed into graph

structures.

• It makes impossible to write code that can crash or break real-time safety

rules.

• It can be very easily learned by anyone who’s familiar with C/C++, javascript

or other C-style languages.

https://github.com/cmajor-lang/cmajor/releases

Domenico Cipriani - 2024

Learn PHARO

• The Pharo MOOC: https://mooc.pharo.org/ (7 weeks).

• Advanced OOP Design and Development with Pharo:

https://advanced-design-mooc.pharo.org/ (10 modules)

• Its powerful reflection and inspection capabilities, allowing

you to explore and understand the system interactively.".

• Free books! https://books.pharo.org/

https://mooc.pharo.org/
https://advanced-design-mooc.pharo.org

Domenico Cipriani - 2024

INSTALL PHAUSTO

Metacello new

 baseline: 'Phausto';

 repository: 'github://lucretiomsp/phausto:main';

 load

• First, download the Pharo launcher: https://pharo.org/download

• The Pharo Launcher is a tool allowing you to easily download

Pharo core images.
• Download the packed librariesBundle for your platform from the

Phausto repo, https://github.com/lucretiomsp/phausto
• Open a Playground (CMD +OW), then copy and evaluate (CMD+D) this script.

https://pharo.org/download
https://github.com/lucretiomsp/phausto

Domenico Cipriani - 2024

Learn Phausto
• Open a Playground and evaluate: MasterLu go.

• The semantics of Phausto align
closely with Faust.

• We strive to keep parameters
names ident ica l whenever
possible.

• We support parallel, sequential,
split and merge composition but
wit Pharo syntax

• Or visit: https://lucretiomsp.github.io/musicwithpharo/

https://lucretiomsp.github.io/musicwithpharo/

Domenico Cipriani - 2024

MODULAR Dsp programming
• Phausto offers an approach to develop and design synthesisers and effect that is inspired by

modular synthesiser patching.

• In Phausto, we connect Unit Generators setting their members value or using the ChucK operator

=> (That we kindly borrowed from our Chuckian friends)

Oscillator Envelope Filter Reverb

Output

synth := PulseOsc new => ADSREnv new => ResonLp new => SatRev new.

dsp := synth new stereo asDsp.

dsp init.

dsp start.

• Phausto organises and implement sthe functions and the semantics of FAUST standard library into
Unit Generators subclasses drawing deep inspiration from the ChucK programming language.

The concept of Unit Generator (UGens) as basic building
blocks for signal processing algorithms was first
developed by Max Matthews and John E.Muller for the
Music III program n 1960.

Domenico Cipriani - 2024

Create a patch

In Phausto, as in Faust, a MIDI synthesizer requires
three essential UI labels:

•freq: Controls the oscillator's frequency, typically

linked to MIDI note-on messages.

•gate: Manages note-on and note-off events to

trigger sound.

•gain: Adjusts the output volume.

Domenico Cipriani - 2024

(Same DSP written in Faust)

Phausto code is much
shorter, as all Unit
Generators come with a user
interface with default
parameters

Domenico Cipriani - 2024

• dsp createCmajorMIDIPatchNamed: ‘BasicSynth1'.

Creates a new folder inside documents/cmajorPatches/

The folder contains a .cmajor file,
a .cmajorpatch file and a
polyWrapper.cmajor file (thanks
Cesare Ferrari for the help!), which
handles polyphony.

Create a patch

• dsp createCmajorFXPatchNamed: ‘BasicEffect’.

Creates a Cmajor patch to be used on an audio track; the folder does not contains the
polyWrapper.

Domenico Cipriani - 2024

A short sample of the
~400 lines of

Cmajor code
generated by the
Faust compiler

Domenico Cipriani - 2024

Use a patch in a daw

Domenico Cipriani - 2024

What’s next?
• Porting all the functions from the Faust standard library (65% covered at the moment).

• ‘Auto-smoothing’ on UI parameters

• Implement more Toolkit objects, i.e.higher level blocks to construct synthesiser and effects.
• Export a UI designed in Pharo with Bloc to a Javascript file.

• Additional (video) tutorials and a comprehensive booklet on Phausto.
• Encouraging sound artists and producers to use plug-ins from Cmajor patches by developing a series

of low cost synths and effects by them available to a ready-to-install Cmajor plug-in wrapper from the
SoftComputing Bandcamp

Bloc is a low level UI
infrastructure and
framework for Pharo

